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Abstract

The synthesis of new pyrrole-functionalized quinoxalines and benzimidazole is described. Our methodology involves the condensation
between 2-oxo-2-(1H-pyrrol-2-yl)acetic acid and differently substituted 1,2-phenylene diamines. Depending on the substitution and on the
reaction conditions, the synthesis leads to either the pyrrolyl-quinoxaline or -benzimidazole heterocycles. Further insights concerning the
structural arrangement of the pyrrolyl-quinoxaline were obtained by solid state analysis, revealing an inverted pyrrole similar to that
observed for 2,3-dipyrrolyl quinoxalines. This observation accounts for the fact that strong dipolar interactions or intermolecular
H-bonds may govern the structural arrangement in the solid state.
� 2008 Elsevier Ltd. All rights reserved.
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Due to a large field of interest that ranges from pharma-
ceutical to material chemistry, the preparation of small het-
erocycles underwent a renewed interest in the recent years.
In particular, quinoxalinone derivatives exhibit a privileged
structure for drug design in medicinal chemistry. Indeed,
acting as glutamate receptors1 or serine protease inhibi-
tors,2 quinoxalin-2-ones were proven active for treating
diseases of the central nervous system like Huntington, or
Parkinson and Alzheimer diseases. Indole-substituted qui-
noxalinone was also proven active as vascular endothelial
growth factor (VEGF) inhibitor.3 In parallel, other small
heterocycles such as benzimidazoles found applications
both in medicinal4 or material chemistry.5
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During the course of our study on the development of
pyrrole-based anion sensors, we have been interested in
the preparation of pyrroles featuring a-linked heterocyclic
chromophores that could ‘report’ on the coordination.
Accordingly, we and others synthesized new 2,3-dipyrrolyl-
quinoxalines (DPQ) by reacting 1,2-di(1H-pyrrol-2-yl)-
ethane-1,2-diones and 1,2-diaminobenzenes.6 As dipyrrol-
ylquinoxalines displayed interesting anion binding
properties, we decided to investigate whether the simulta-
neous presence of the two pyrrole subunits was an absolute
requirement. Indeed, to date, neither solid state nor solu-
tion analyses evidenced an ‘in–in’ conformation (Fig. 1).
In this Letter, we report the results we obtained when we
carried out the reaction between 2-oxo-2-(1H-pyrrol-2-
yl)acetic acid 1 and 1,2-diaminobenzene or 4,5-dinitro-
1,2-diaminobenzene.

2-Oxo-2-(1H-pyrrol-2-yl)acetic acid 1 (Scheme 1) was
prepared according to Birchall and Rees’s method.7 At
�70 �C, pyrrole was reacted with 1 equiv of oxalyl chloride

mailto:bruno.andrioletti@univ-lyon1.fr


N N

NH HN

N N

HN

NH

"in-out"

"in-in"

Fig. 1. Anion binding by DPQ: two possible conformations.

Table 1
Access to the quinoxalinone or benzimidazole derivatives
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Entry R Conditions Product (yield)a Product (yield)a

1 H PhMe/TFAcat. 2 (62%) 4 (0%)
2 NO2 PhMe/TFAcat. 3 (2%) 5 (18%)
3 NO2 AcOH 3 (38%) 5 (0%)

a Yields refer to those of pure isolated products characterized by spec-
troscopic methods.
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in dry diethyl ether. After usual work up, 1 was isolated in
70% yield. The following condensation between 1 and 1,2-
diaminobenzene appeared very solvent dependant. Indeed,
in ethanol—a solvent commonly used for Schiff-base type
condensations—the expected 3-(1H-pyrrol-2-yl)quinoxa-
lin-2(1H)-one 2 was isolated in poor yield (<15%) even in
the presence of a dehydrating agent. By contrast, in reflux-
ing toluene and in the presence of catalytic amounts of
TFA,8 we were able to isolate 2 in 62% yield.9 Interestingly,
when 4,5-dinitro-1,2-diaminobenzene was used instead of
1,2-phenylenediamine, the aforementioned conditions were
not suitable anymore as the expected quinoxalinone 3 was
isolated in less than 2% yield! Consequently, we re-investi-
gated the experimental conditions for the preparation of 3,
and found out that reacting 3 equiv of 4,5-dinitro-1,2-di-
aminobenzene with 1 equiv of oxo-acid 1 in refluxing acetic
acid for 7 days afforded 3 in 38% yield (see Table 1).10

On the other hand, further investigations concerning the
outcomes of the condensation between 1 and 4,5-dinitro-
1,2-diaminobenzene in refluxing toluene in the presence
of a catalytic amount of TFA, revealed that the unexpected
2-(1H-pyrrol-2-yl)-1H-benzo[d]imidazole 5 was formed in
18% yield, as the major product.11 Interestingly, the unsub-
stituted benzimidazole 4 was never observed, even in
refluxing acetic acid.

A possible explanation for the formation of 5 involves
the primary attack of one amino-group on the ‘activated’
keto-carbonyl leading to an imine-intermediate. The elec-
trophilic imine carbon atom is then intra-molecularly
trapped by the second amine. Following, in the drastic
oxidizing conditions used here, the resulting 2,3-dihydro-
benzimidazole is readily oxidized to the corresponding
2-pyrrolo-benzimidazole 5 upon decarboxylation.

Information concerning the structural arrangement of
the quinoxalinone in the solid state was obtained by single
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Scheme 1. Proposed mechanism for the formation of 5.
crystal diffraction analyses of 2 grown by slow evaporation
of a dichloromethane solution.12 The structure belongs to
the P�1 space group and is almost planar with a torsion
angle (N4–C3–C22–N21) of 11.4�. In the solid state, 2 dis-
plays the amide tautomeric form with a C2–O1 bond dis-
tance of 1.24 Å (Fig. 2a). As it has already been observed
for dipyrrolylquinoxaline (DPQ),13 the structure reveals
an inverted pyrrole with the NH pointing toward the qui-
noxalinone nitrogen N4. This observation confirms that
in the solid state, the steric hindrance resulting from the
close proximity of the two pyrrole rings in DPQs is not
responsible for this unexpected conformation. Conversely,
this observation accounts for dipolar interactions in the
solid state as no intramolecular N21� � �H� � �N4 hydrogen
bond is evidenced presently. The supramolecular assembly
of quinoxalinone 2 reveals an interesting arrangement
with two adjacent, antiparallel quinoxalinones distanced
of 3.35 Å (C2–C3–C9–C10–N1–N2, Fig. 2b). In addition
to intermolecular p stacking interactions, the stability of
the supramolecular assembly is also insured by an efficient
H-bond network between the amide oxygen O1 of one
quinoxalinone and the pyrrolic NH of a neighbor. The
distance between O1 and N21 was measured at 2.95 Å
(Fig. 2b).

As simple DPQ were proven efficient anion sensors in
organic medium, we have also been interested in evaluating
the anion binding properties of the monopyrrole analogue
2. Unfortunately, both UV–vis and NMR titrations of 2

with halides revealed the absence of noticeable affinities
of 2 for anions. This result surprised us as the presence
of the carbonyl group was expected to enhance the H-bond
donor character of the pyrrole NH. Thus, this result con-
firms that while not acting in an intramolecular, synergetic
way, the presence of the two pyrroles in DPQ-like systems
constitutes a requirement for the observation of good
anion binding affinities.14

In conclusion, we have demonstrated that pyrrolo-
quinoxalinone–DPQ mono-pyrrole analogues—can be
prepared by condensating 2-oxo-2-(1H-pyrrol-2-yl)acetic
acid 1 with 1,2-phenylenediamine. Depending on the



Fig. 2. Top and side view of 2. Dashed lines indicate hydrogen bonding interactions.
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experimental conditions and on the substitution of the
aromatic diamine, the biologically relevant 2-pyrrolo-benz-
imidazole could also be isolated at the expense of the
expected quinoxalinone. The X-ray crystal structure of
the quinoxalinone revealed a flat conformation with an
inverted pyrrole similar to what was observed for DPQ.
However, by contrast with DPQ, quinoxalinone 2 did not
display any anion binding affinity. Further work is cur-
rently in progress in our Laboratory for generalizing our
synthetic approach and in bringing more insights in the
coordinating properties of the newly prepared heterocycles.
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